Climate sensitivity across the RCEMIP simulations

Tobias Becker

Max Planck Institute for Meteorology

RCEMIP provides a wide spectrum of models of different complexity

- simulation length:
 - 1000 days (GCM)
 - 100 days (CRM)
 - 50 days (LES)
- three prescribed SSTs:295 K, 300 K, 305 K
- details on RCE setup in Wing et al., 2018

$$dT = \frac{dR_{\text{TOA}}}{\lambda}$$

$$ECS = \frac{F_{2xCO2}}{\lambda}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT} = \frac{dR_{\text{TOA,lw}}}{dT} + \frac{dR_{\text{TOA,sw}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT} = \frac{dR_{\text{TOA},\text{lw}}}{dT} + \frac{dR_{\text{TOA},\text{sw}}}{dT}$$
$$\frac{dR_{\text{TOA},\text{clr}}}{dT} = \frac{dR_{\text{TOA},\text{clr},\text{lw}}}{dT} + \frac{dR_{\text{TOA},\text{clr},\text{sw}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT} = \frac{dR_{\text{TOA,lw}}}{dT} + \frac{dR_{\text{TOA,sw}}}{dT}$$
$$\frac{dR_{\text{TOA,clr}}}{dT} = \frac{dR_{\text{TOA,clr,lw}}}{dT} + \frac{dR_{\text{TOA,clr,sw}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda} \iff ECS = \frac{F_{2xCO2}}{\frac{dR_{TOA}}{dT}}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT} = \frac{dR_{\text{TOA,lw}}}{dT} + \frac{dR_{\text{TOA,sw}}}{dT}$$
$$\frac{dR_{\text{TOA,clr}}}{dT} = \frac{dR_{\text{TOA,clr,lw}}}{dT} + \frac{dR_{\text{TOA,clr,sw}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda} \iff ECS = \frac{F_{2xCO2}}{\frac{dR_{TOA}}{dT}} \rightarrow 3.7 Wm^{-2}$$

$$dT = \frac{dR_{\text{TOA}}}{\lambda} \iff \lambda = \frac{dR_{\text{TOA}}}{dT} = \frac{dR_{\text{TOA,lw}}}{dT} + \frac{dR_{\text{TOA,sw}}}{dT}$$
$$\frac{dR_{\text{TOA,clr}}}{dT} = \frac{dR_{\text{TOA,clr,lw}}}{dT} + \frac{dR_{\text{TOA,clr,sw}}}{dT}$$

$$ECS = \frac{F_{2xCO2}}{\lambda} \iff ECS = \frac{F_{2xCO2}}{\frac{dR_{TOA}}{dT}} \rightarrow 3.7 Wm^{-2}$$

two ECS estimates per model: 305 K - 300 K & 300 K - 295 K (skipping the first 50 days for GCM / CRM, and the first 25 days for LES)

JCP Berlin

MPI large domain models: extreme spread in climate sensitivity related to temperature dependence of convective self-aggregation

- significant correlation both for GCMs and CRMs
- \bullet smaller climate sensitivity in GCMs in line with positive I_{org} / dT

- significant correlation both for GCMs and CRMs
- smaller climate sensitivity in GCMs in line with positive I_{org} / dT
- a necessary condition for extreme climate sensitivities seems to be the according tendency in self-aggregation

- significant correlation both for GCMs and CRMs
- smaller climate sensitivity in GCMs in line with positive I_{org} / dT
- a necessary condition for extreme climate sensitivities seems to be the according tendency in self-aggregation
- clear-sky TOA fluxes still show the same correlation
- → mechanism is independent of clouds

- significant correlation both for GCMs and CRMs
- \bullet smaller climate sensitivity in GCMs in line with positive I_{org} / dT
- a necessary condition for extreme climate sensitivities seems to be the according tendency in self-aggregation
- clear-sky TOA fluxes still show the same correlation
- → mechanism is independent of clouds
- changes in the clear-sky radiation budget only depend on longwave radiation
- → mechanism: convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation

• for GCMs: significantly higher correlation of dR_{TOA} / dT with f_{sc} / dT than with I_{org} / dT

- for GCMs: significantly higher correlation of dR_{TOA} / dT with f_{sc} / dT than with I_{org} / dT
- clear-sky fluxes do not show any correlation

- for GCMs: significantly higher correlation of dR_{TOA} / dT with f_{sc} / dT than with I_{org} / dT
- clear-sky fluxes do not show any correlation
- longwave fluxes do not show any correlation

- for GCMs: significantly higher correlation of dR_{TOA} / dT with f_{sc} / dT than with I_{org} / dT
- clear-sky fluxes do not show any correlation
- longwave fluxes do not show any correlation
- changes of shallow clouds in the subsidence region with T strongly affect climate sensitivity via their influence on how much shortwave radiation they reflect back to space

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations
- Two mechanisms are responsible for extreme climate sensitivities:
 - increased convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations
- Two mechanisms are responsible for extreme climate sensitivities:
 - increased convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation
 - more shallow clouds in the subsidence region reflect more shortwave radiation (this mechanism is mainly important in GCMs!)

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations
- Two mechanisms are responsible for extreme climate sensitivities:
 - increased convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation
 - more shallow clouds in the subsidence region reflect more shortwave radiation (this mechanism is mainly important in GCMs!)
- Climate sensitivity is overall larger in CRMs than in GCMs

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations
- Two mechanisms are responsible for extreme climate sensitivities:
 - increased convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation
 - more shallow clouds in the subsidence region reflect more shortwave radiation (this mechanism is mainly important in GCMs!)
- Climate sensitivity is overall larger in CRMs than in GCMs
- Open Question: Why do the different RCEMIP models handle the mechanisms that lead to extreme climate sensitivities so differently?

- On the small domain (in the absence of convective self-aggregation), climate sensitivity estimates are
 - robust (similar for CRMs & LES models)
 - in the same range as in CMIP5
 - increasing with temperature
- On the large domain and in GCMs, differences in convective organization and clouds can lead to very different climate sensitivities across the RCEMIP simulations
- Two mechanisms are responsible for extreme climate sensitivities:
 - increased convective self-aggregation leads to a stronger overturning circulation, stronger drying in the subsidence regions and increased outgoing longwave radiation
 - more shallow clouds in the subsidence region reflect more shortwave radiation (this mechanism is mainly important in GCMs!)
- Climate sensitivity is overall larger in CRMs than in GCMs
- Open Question: Why do the different RCEMIP models handle the mechanisms that lead to extreme climate sensitivities so differently?

